Jared Akerstrom
Teaching Portfolio

jaredakerstrom.com
jakerstr@gmail.com
Table of Contents

Teaching Philosophy
 page: 4

Course Proposals
 pages: 6-7

Proposed Syllabus
 pages: 9-15

Proposed Project
 pages: 17-18

Assessment Rubrics
 pages: 20-21

Midterm Feedback Form
 page: 23
Teaching Philosophy
I have come to understand the artistic process as representing a sine wave, with each project, idea or pursuit as a period or full cycle. My aim as a professor is to recognize and support each stage of the process to provide the platform to facilitate the modes of thinking and making. We start our phase at a base line primed and ready to begin. This is our origin point. From here, we delve deep. We dig within ourselves to dredge up our histories, our place and our core values. This is a time of insecurity, unknowing and instability. A caring, supportive, and receptive presence is needed during this period of student development. My role here is to encourage the student to push their modes of thinking further and more specifically. Sharing other voices and media and articulating how I see the utility of these resources provides a common ground with movements, people, thoughts and ethos. This demonstrates the aim of pursuing something greater beyond themselves. Once this curve drudges up something of note, pieces begin to fall into place and momentum builds. For this phase, a practical, technical, and solution driven voice is needed to support the realization of an idea. What methods, tricks or materials are out there to help realize the student’s goals? While doubt is always part of the equation, as students start to actualize an idea their confidence grows and this amorphous concept becomes tangible. This is the peak of the wave. It may not be as tall as the student had hoped, or it may be sky-high. However, for each of these results the recognition and praise for what was done well and the encouragement of what could be done better becomes the way that we build and grow for our next iteration. As we come off of this high, we contemplate our previous effort and come back down to our baseline ready to begin again.

The purpose of education is to provide students with a nurturing environment where they can develop their voice, as well as their ideas, through intentional and rigorous engagement. Coming from a Rust-Belt city and having held jobs learning trades, I have learned meticulous and tactile attention to detail provides a basis for understanding the process of making a piece. This experience developed in me a lasting work ethic that I bring to every project. Having input from experts that I respected made me work harder. The lessons of hard work and the expertise have become the foundation that my pedagogical practice rests on.

Education is a mode of engaging with our world. As David Foster Wallace said, “learning how to think really means learning how to exercise some control over how and what you think”. In order to continue to pursue observing and comprehending our world for the rest of their lives, each student needs to gain certain tools of engagement that can facilitate tackling new learning challenges. Art education provides the teaching premise to allow students a much more personal level to observe and understand the world we live in. Sculpture, specifically, provides the freedom to explore real phenomena as its tenet through objects, installations, time based media and performance. This expanded field of sculpture is open to all voices.

My aim in teaching art is to encourage the often insecure young artist that art never needs to ascribe to certain standards, forms or opinions. From my own experience, I never knew that what I wanted to do was to make art. I have always had ideas about wanting to incorporate my own technical modes of study into the construction of unique objects but it took me a long time to embrace the audacity of calling myself an artist. As someone that has navigated a career with this as my identity, I want to bring real world experience to the classroom to provide tangible skills to students looking to launch similar pursuits. By listening and not explaining, I hope to listen to the new ideas of what art is and can be. For these ideas that develop in each contributing student will inevitably change our field. With effort, respect, passion and the development of confidence, each student will learn that there is only the pursuit of delving deeper.
Course Proposals
Proposed Course Descriptions
Jared Akerstrom
jaredakerstrom.com
Rhode Island School of Design
Sculpture Department

Papermaking, for the 21st century
Undergraduate/Graduate
Elective (no pre-requisites)
3 Credits
Instructor: Jared Akertrom
Mondays: 1-6pm
Lab fee: $50
Location: Graduate printmaking studio
Capacity: 10 students

Paper is one of the most important inventions in human culture. It provided the platform to record and pass on information in a lightweight and durable technology. Since the early Chinese paper from the 2nd century BCE until the 20th century, this material has been our primary means of communication over time and place. With the digitizing of information, paper’s primary function has been rendered obsolete. So what is the role of paper today? In this class we will be exploring the historical significance of paper, learn techniques of how to make it paper ourselves and look at contemporary artists who still explore the medium. We will use Dard Hunter’s seminal text Old Papermaking as its guide. This class will cover each and every step of the process from preparing the paper pulp to the finished sheet. The first part of the class will explore “western” style paper making by using flax, abaca and cotton fibers, a Hollander-style beater, mould and deckles, presses and dry boxes. The second half of the class will explore “eastern” style paper making by cooking kobo fiber, using traditional mallets to beat the fiber and a sugeta to form the sheets of washi paper. Each student will achieve a level of proficiency in this challenging craft as well as the ability to make specialty paper for use in one’s own art practice.

Sculpture Beyond the Expanded Field
Sophomore Major Studio
Non-Elective (no pre-requisites)
6 Credits
Instructor: Jared Akertrom
Tuesday/Thursday: 1-6pm
Lab fee: $100
Location: Metcalfe 4th Floor
Capacity: 15 students

The antiquated stereotype of a sculptor is that of a renaissance-era European male with a giant block of marble and a chisel. Sculpture has come a long way since the commemorative monument and into the 21st century as a much more diverse and open discipline. Looking at some of the historical canon as a jumping off point, we will use Rosalind Krauss’s essay “Sculpture in the Expanded Field” from 1979 as a main text to see how contemporary sculpture has evolved since the late 20th century through today. After starting in art history and theory, the class will maneuver through exercises in making objects and understanding space, while bringing performative components into the fold.
An introduction to fabrication techniques in wood, metal, plaster, clay as well as non-traditional materials will enable students fluency in fabricating ideas. Explorations beyond materiality such as movement, performance and conditional negotiations will be introduced and incorporating into three specific project prompts tied to specific techniques or materials. Group critiques serve as a platform of sharing ideas and developing a discourse, as well as enabling students to develop their critical voice. This course is required for sculpture majors and will serve as the technical and conceptual platform to build upon for the remainder of the time in the sculpture department.

Module Constraints
Undergraduate/graduate
Elective (no pre-requisites)
3 Credits
Instructor: Jared Akertrom
Fridays: 1-6pm
Lab fee: $100
Location: RISD Co-Works
Capacity: 15 students

Module Constraints will examine the methods in which constraints (i.e. time, money, skills, identity, physical space, material, tools) impact the development and production of an artistic idea. By generating our own additional sets of constraints from personal interest, we will investigate the ways that rules can be an inspiring force rather than a limiting one. Through strictly defined assignments students gain experience for finding simple solutions for fabricating repetitive processes. Based in Co-Works, RISD’s interdisciplinary fabrication lab, we will test and produce modular work through mainly two-dimensional digital fabrication methods such as: laser cutting, plotter cutting, UV printing, vacuum forming, and other digital fabrication methods. By visiting the Loeb Collection at the Nature Lab and through slides, readings and demonstrations we will explore the greater world of scripted or composed work and the way our universe fits together. We will look at the project The Additivist Cookbook as a guide to understanding how technology can be used to combine unlikely ideas and objects together. The class will introduce the digital modeling software Rhino as a two dimensional drawing tool to be able to make parts with exact geometries. By combining design thinking and the artistic creative process we will have group critiques after each of the four major projects to aid in pushing students beyond their perceived limitations. Ultimately, this course will serve as a toolkit to approach, diagnose and negotiate the constraints we will face in our artistic lives.
Proposed Syllabus
MODULAR CONSTRAINTS
Rhode Island School of Design
Undergraduate/graduate
Elective (no pre-requisites)
3 Credits
Instructor: Jared Akertrom
Fridays: 1-6pm
Lab fee: $100
Location: Fletcher, RISD Co-Works
Capacity: 15 students

Space is not a passive vacuum, but has properties that impose powerful constraints on any structure that inhabits it. -Arthur Loeb

Modular Constraints will examine the methods in which constraints (i.e. time, money, skills, identity, physical space, material, tools) impact the development and production of an artistic idea. By generating our own additional sets of constraints from personal interest, we will investigate the ways that rules can be an inspiring force rather than a limiting one. Through strictly defined assignments students gain experience for finding simple solutions for fabricating repetitive processes. Based in Co-Works, RISD’s interdisciplinary fabrication lab, we will test and produce modular work through mainly two-dimensional digital fabrication methods such as: laser cutting, plotter cutting, UV printing, vacuum forming, and other digital fabrication methods. By visiting the Loeb Collection at the Nature Lab and through slides, readings and demonstrations we will explore the greater world of scripted or composed work and the way our universe fits together. We will look at the project The Additivist Cookbook as a guide to understanding how technology can be used to combine unlikely ideas and objects together. An introduction to the digital modeling software Rhino as a two dimensional drawing tool will enable us to make parts with exact geometries. By combining design thinking and the artistic creative process we will have group critiques after each of the four major projects: Compose a “Score”, 1,000 Project, Modular Methods and Folding in, to aid in pushing students beyond their perceived limitations. Ultimately, this course will serve as a toolkit to approach, diagnose and negotiate the constraints we will face in our artistic lives.

Goals:
- To diagnose, articulate and move past perceived limitations that we face in our artistic lives
- To develop a toolkit of solutions for making modular work
- To develop the sense of community where we all learn from each other
- To bring new drawing and making methods into a project workflow
- To instill creative and diligent work ethics

Learning outcomes:
- Analog drafting and fabrication skills
- Digital drafting and fabrication skills
- Four progressively ambitious project of modularity
- Enhanced critical ability in discussion and self-reflection
- In depth understanding of connecting modules together
Basic Skill Set
- Modular Constraints will develop students’ techniques for producing work from two dimensional materials into three dimensional structures.
- Other skills will include, but not be limited to: precision measuring and simple pattern making as well as digital drawing and the safe operation of the laser cutter, plotter cutter, UV printer, and vacuum former. Students will also develop their critical voice and spatial thinking.

Materials
- Students should each have a portable computer with Rhino installed on it before the first day of class. There is a 90 day free trial license for those who would like to try Rhino during this class. It could be possible for a student to navigate this course without a computer but advanced knowledge of hand drafting and cutting techniques would be required.
- Time on the laser cutter is not free. It costs $1.25 for the first fifteen minutes and $0.10 a minute thereafter. Students need to have risdbucks on their ID to pay for their time on any Co-Works machine. Part of this class will be on methods of using the machine efficiently in order to limit these expenses as much as possible.
- Materials will be determined by the type of work each student would like to make. These include, acrylic, paper, cardboard, MDF, plywood and fabric. Masonite, vinyl and PVC are all banned from use on the laser-cutter. If the material you are thinking about using is not listed here or on the laser-cutter settings sheet, please check in with a monitor before beginning.
- The cost of materials will vary per student. However, the knowledge gained in this course regarding how to efficiently and effectively use these digital machines will help to keep costs within $50-100.

Resources
RISD Co-Works
- The lab is open 10am -10pm, seven days a week. Please be sure to check in with the monitors outside of class time before using any equipment.
- Students must and will receive throughout this class adequate training for each piece of equipment in Co-Works prior to use. Monitors will be available for troubleshooting minor issues only and do not instruct students on how to use the machines.

The Arthur Loeb Collection
- This will be an often used resource for this class beyond our field trip. Visiting the collection outside of class will require a reservation which can be made in person at the Nature Lab or on Nature Lab’s website.

Individual Meetings
- My office hours will be held to meet with students outside of class time on an as need basis. A full day’s notice will be most effective in facilitating an outside of class meeting.

Attendance
Attendance during every class is mandatory. If you miss a class it will be impossible to make up for what you missed. Class is when we share ideas with others, have discussions and learn new skills. This cannot be replicated. If you cannot attend a class due to extenuating circumstances, email me well before class to make arrangements to stay caught up with the progress of the class. This, however, does not replicate the experience of being in class or mean that your absence is excused. As part of attendance, each student is expected to arrive and be settled at the start of class. Punctuality is an important skill. Please be respectful your classmates and my time.
Critique
Each project will be presented during the class in the form of a group critique. Critiques occur the first day of each week and will be a time when ideas are shared amongst peers. This is valuable time when we can confirm the successes of each project, while also noting where the project has space for improvement. This will help students create productive iterations throughout the duration of the course. Critiques will be open and casual with participation, close inspection, and respect as guiding principals. For each critique we will also be guided by the Liz Lerman Critical Response Process. Moving through four distinct phases, the first begins by having the group make neutral observations. These recognize certain mechanisms, impressions and things of note. The second phase places the artist as a questioner of the audience (or potentially allows the continuation of neutral observations). The third phase is to ask questions, without embedded opinion, to the artist. Finally, during the final stage, when granted permission from the artist, is opinionated comments. This method enables the ability for all components to have equal weighting and prevents the often glossed over components, like establishing the base level understanding of what is going on, to have full articulation.

Course Requirements
Students are expected to complete all assigned readings and assignments as well as be able to engage in the subject matter to their best ability. We will be reading Donella Meadows’ Dancing with Systems, bits of Liz Lerman’s Critical Response Process, essays from The Additivist Cookbook, among other texts. Students will also complete short assignments to be coupled with the longer four projects. *Please note: by choosing to remain in this class, you agree to follow the standards set forth in this syllabus.

Course Structure
Demonstrations on Co-Works equipment, readings, a field trip to the Loeb Collection, slide-shows of artists work, and exercises will lead to each of the four major projects; each one to be completed by the first class of the following week. The four projects are:

- Project 1: Compose a “Score”
- Project 2: “1,000″ Project
- Project 3: Modular Methods
- Project 4: Folding In

Weekly Schedule
Week 1

Resources
-Introduction of students, course and syllabus.
-Sort out students and their registration.
-Ground rules about using Co-Works as a space including a general tour, hours of operation, and how to get help.
-Overview of course and type of work that we will be focusing on. Show some of my own slides as an introduction to my personal interest in this type of work.
-Assign reading “Dancing With Systems”

Demonstrations
-Verify each students capability to use either Illustrator or Rhino as digital drafting tools.
-Introduce some of the equipment in Co-Works, specifically the laser cutter and plotter cutter.
Week 2

Presentation
-Each student will bring in documentation of a previous personal work and talk about their decisions during process that led them to the final outcome, no more than 2 minutes per student.

Review/Critique/Discussion
-Begin discussions regarding general limitations we place upon ourselves to help generate work.
-How does the reading “Dancing With Systems” inform the way we think through this class?

Resources
-Show slides of Sol Lewitt, Yoko Ono, Mathew Barney, Bruce Nauman, Fluxus, John Cage, minimalist composers and other works based on alternative scores.

In-Class Assignment
-Devise a rule-based work for a 10 x 10 square grid. Practice modes and language for specific commands. Exchange with other students as a workshop.

Week 3

Review/Critique/Discussion
-go over language from the last in-class assignment (10x10)
-disussion on how these ideas could be expanded

Assignment
Project 1: Compose a Score. For this project, each student is expected to develop a set of directions, constraints, rules, plans, or specific instructions in order to produce a piece of work. These will serve as the guidelines in the production or execution of an idea. Along with the “original score”, the student must bring to class some sort of documentation media (drawing, object, photo, video, or whatever seems fit) demonstrating the manifestation of the completed instructions. As well as following their own guidelines, each student is expected to execute the score of a fellow classmate.

Learning Outcomes:
-Collaborative melding of conceptual frameworks
-The ability to think divergently through restricted parameters
-Introduction to the ideas behind modular making

Review/Critique/Discussion
-At the end of class we will talk about the concepts that people have come up with and discuss the practicality of each.
-We will also determine who will collaborate with whom.

Week 4

Review/Critique/Discussion
-Review Project 1: Compose a Score, and examine the methods, modes, and ideas generated from the developed rules. Specific attention will be placed on the differences in outcome between the composer of the score and the two iterations manifested from it; that of the student who developed the rule and that of the student that followed the rule.
Demonstrations
- Methods for mass production: Setting up cutting stops, jigs, templates or other physical devices. Continue to work on fluency in digital fabrication methods as well as methods of laying out shapes effectively in programs for production.

Resources
- Examination of production methods: printing, stamping, cutting, counting, and the evolution of production methods (i.e. Ford, Wiener Werkstätte and others).

Week 5
Assignment
Project 2: 1,000 Project: For this project, each student is expected to produce a series of 1,000* pieces. The object of this assignment is to encourage clever and time saving methods to fabricate and easily count the produced series. Each piece of the series must be modified and articulated by the student. Questions to consider: Can the sum of the parts be something greater? How is this piece displayed? Both the final series as well as documentation will be part of the review.
*(1,000 is the number set for students to consider how to develop constraints that will produce this large of an outcome. Students will be required to produce at least over 100. However, 1,000 is the goal.)

Learning Outcomes:
- Implementation of new making skillset
- Understanding of how to bend rules
- “Work smarter, not harder” ethos

Review/Critique/Discussion
- Discussion of how this could be possible, what types of solutions could we come up with?
- What are the rules that we have to adhere to, what types of rules are we able to bend?

Week 6
Review/Critique/Discussion
- Review Project 2: 1,000 Project. Careful consideration will be made of the final work but documentation of the process, methods of production, and creative problem solving techniques will factor into the conversation.
- What have we learned from this process?
- How does this change the way that we think through an idea?

Resources
- Introduce the Additivist Cookbook. Go over the pdf in class and look at some of the models that are included in the archive.
 -http://additivism.org/cookbook

Week 7
Resources
- Field Trip to visit the Loeb Collection at the RISD Nature Lab. This visit will inform the ongoing slides and information about modularity and structure.
 - Lecture on Structure, “the arrangement and organization of interrelated elements in a material object or system.”
-Show the evolution of the convex polyhedra (Platonic Solids, Archimedean Solids, Johnson Solids) and examples of these structures in nature (Molecular structures, networks, mathematics).

Week 8
Demonstrations
-Show the methods in which things go together through examples of cold connections, fittings, fasteners, pins, notches, tabs, joints, and other means of developing three dimensional connections.
-Show how to make slice forms in 123D Make, as well as different ways that large solid objects can be represented using as little material as possible.

Week 9
Assignment
Project 3: Modular Methods: Can something small and easily transportable become something large and significant? How can sheet goods become three dimensional? For this Project students are expected to design, at a minimum, 3 unique modular components that fit together to form a larger structure of at least 20 pieces. Students will produce the pieces through the use of digital fabrication, hand process, or a combination of both methods. Emphasis will be placed on developing work of a certain, defined, scale that feels like a final version rather than a study or prototype.

Learning Outcomes:
-Real world solutions for dealing with spacial limitations in an artistic practice.
-Invisioning a work for a location, without the ability to see it before installation.
-Developing interconnected systems with specific tolerances

Review/Critique/Discussion
-What is our toolkit that we now have to use for this project?
-What might still be needed to successfully complete the assignment?

Week 10
Review/Critique/Discussion
-Review Project 3: Modular Methods
-what was successful about the projects?
-what can we learn, overall from the work?
-How do we approach the next iteration

Demonstrations
-This will be flexible time to be able to accommodate for the needs or interests of the class, either for pushing into more supplementary subject matter or as a way to adequately cover the ideas from earlier weeks.
-Time will be given to students to work self-directed along with individual meetings.
Week 11
Assignment
Project 4: Folding In: For the final and self-directed project, students will examine how components of previous assignments can be brought into their personal practice. Collaborative work can, but is not required to be, a component of this final project. During open class-time and individual meetings with students, we will work through how their projects consider external constraints, specifically the characteristics of the space that they choose to install in.

Learning Outcomes:
- Development of independent topics of study
- Potential collaborative making
- Synthesizing information into a final iteration

Week 12
Review/Critique/Discussion
- Final Review: Project 4. Significant time will be allowed for each student to present their final ideas in the physical space of their choosing.
- If space is available, a mini “show” of the final projects will be held.

Grading
Grading will consist of class participation and four projects, each weighted equally.

20% Class Participation
I am aware of the fact that each person contributes to a class differently. This portion of the grade acknowledges that asking questions, making statements, bringing in work that begins a conversation, helping others, and being present (both physically and mentally) are all vital components of a productive learning environment. If you are fully able to contribute to our class environment in the ways that you feel comfortable or capable, full credit will be received. Students attempting to push beyond what is comfortable, in regards to participation, is admirable and encouraged.

20% Project 1: Compose a “Score”
20% Project 2: “1,000” Project
20% Project 3: Modular Methods
20% Project 4: Folding In

Projects:
The ultimate goal for each of these projects and the class is for students to incorporate their own interests, ideas, and passions into each prompt. Students are also encouraged to try new ideas and modes of making. While “strong” work would be appreciated, projects that demonstrate an honest and serious attempt to do something significant and meaningful will receive high marks.
Proposed Project
Core Values (Why): Space is a privilege. Whether we have to share a small studio space with others, share a shop, use tools that can only accommodate certain sizes, or transport work easily, we will always be dealing with space as a limitation in the process of fabrication. This project will focus on this specific dilemma to push ourselves to think beyond this constraint. Can something small and easily transportable become something large and significant upon installation? Is the “whole greater than the sum of its parts”.

Learning outcome goals:
1. Real world solutions for dealing with spacial limitations in an artistic practice.
2. Invisioning a work for a location, without the ability to see it before installation.

Modus Operandi (What): For this Project students are expected to design a system of at least 2 unique modular components that fit together to form a larger structure of at least 20 pieces. These modules are to be made of sheet goods, such as paper, cardboard, MDF, acrylic, plywood or foam. In order for these modules to be attached, a system of connecting needs to be developed. These connections could be classic woodworking joints or some variation that you come up with (think about some of the connection we saw at the Loeb Collection). Other materials, such as string, wire, paper, tape and rubber bands could be utilized in connecting these modules.

Learning outcome goals:
1. Understanding of how “2D” materials can make “3D” installations.
2. Applied usage of physical connections between objects.
3. Awareness of specific tolerances required in attaching modules.
Toolkit (How): Using our new 2D drafting skills in Rhino as a starting point, students will produce the pieces through the use of digital fabrication, hand process, or a combination of both methods. Digital drawings could be printed out and cut by hand, cut using the laser-cutter or plotter-cutter, or used as a way of understanding a dynamic.

Learning outcome goals:
1. Incorporation of Rhino into our sketching process.
2. Practice using digital fabrication methods.
3. Experience organizing the production of a complex project.

Audience/Critique (Who+When): Emphasis will be placed on developing work of a certain, defined scale that feels like a final version rather than a study or prototype. We will critique each students’ work as a class. Each student should prepare to speak about their project and process as an introduction to the critique. The content and concept of the project will be folded into the critique once we have established how the design problem was solved. Projects are due when they are due! Learning to get things done on time is part of the learning process.

Learning outcome goals:
1. Articulation of a thought process and development.
2. Sharing of experiential knowledge between students.

Dissemination (Where): Is the work site-specific? Is a considered location the most effective way of understanding the work? A critique room will be reserved in advance but students wishing to install their work in other locations should notify me of their different location in advance so that we can accommodate the change in location during the critique.

Learning outcome goals:
1. Installation of work in a well thought out and professional manner.
Assessment Rubrics
<table>
<thead>
<tr>
<th>PROJECT ASSESSMENT</th>
<th>A: Exemplary</th>
<th>B: Baseline Expectations</th>
<th>C: Going Through the Motions</th>
<th>D: Checked Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept</td>
<td>Embodies the core concept of the prompt</td>
<td>Ponders and answers each of the main questions (Why, What, How, Who+When, Where?)</td>
<td>Misinterprets or carelessly ignores key components of the prompt</td>
<td>Totally ignores prompt</td>
</tr>
<tr>
<td>Relation to Prompt</td>
<td>Incorporates personal interests and pursuits seamlessly (ownership/embodiment of ideas)</td>
<td>Potentially struggles a little with the putting their own “Why” into the project</td>
<td>Fails to answer a few of the key questions</td>
<td>Does not consider key questions</td>
</tr>
<tr>
<td>Planning</td>
<td>Displays diligent and methodical effort in producing work</td>
<td>Consistently maintains the progress of the project</td>
<td>Crams the project until the last minute</td>
<td>Fails to complete the project</td>
</tr>
<tr>
<td>Workflow</td>
<td>Clearly demonstrates a thorough approach from concept, to sketch, to iteration, to final work</td>
<td>Spends adequate time working from initial idea to final iteration</td>
<td>Skips crucial steps in working through their idea</td>
<td>Demonstrates little or no consideration of working through an idea</td>
</tr>
<tr>
<td>Effort</td>
<td>Reworks, revamps, reimagines, takes risks and boldly goes for something with vigor</td>
<td>Works, imagines and completes the project with energetic yet achievable effort</td>
<td>Clearly does not put forth the effort they are capable of</td>
<td>Showing a fraction of the effort one is capable of</td>
</tr>
<tr>
<td>CLASS PARTICIPATION</td>
<td>A: Exemplary</td>
<td>B: Baseline Expectations</td>
<td>C: Going Through the Motions</td>
<td>D: Checked Out</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Discovers unexp-</td>
<td>Grasps how mate-</td>
<td>Unable to fully</td>
<td>Totally unaware of</td>
</tr>
<tr>
<td></td>
<td>ected and deep con-</td>
<td>rial can be com-</td>
<td>grasp the intention of the</td>
<td>whats going on,</td>
</tr>
<tr>
<td></td>
<td>nnections with</td>
<td>prehended and</td>
<td>course material</td>
<td>without attempting</td>
</tr>
<tr>
<td></td>
<td>course material</td>
<td>put to use</td>
<td></td>
<td>to catch up</td>
</tr>
</tbody>
</table>
&&|
| Critique | Participates con- | Stays on topic and | Easily distracted, makes off topic or | Completely de- |
| | sistently and con- | gives consistent | distracting remarks | rails conversations |
| | scentiously, aware | articulate remarks | | |
| | of the needs of the group | | | |
&&|
| Discussion | Synthesizes and builds off of other students comments to push the conversation further | Respectfully listens and engages in conversation | Occasionally interrupts others and detracts from a productive learning environment | Never contributes or disrupts class for long stretches |
&&|
| Community | Non-presumptuously assists others and becomes a class leader | Gladly assists and works with others easily | Is unwilling or unable to assist others | Negatively affects the work of others |
&&|
| Research | Engages in conversation and research on material beyond but relating to the class | Absorbs and confidently relates course content with class | Rarely participates or overly participates with irrelevant comments | Does not come to class prepared, is unaware of the topic of conversation |
&&|
| Attendance | Absolutely reliable and dependable | Physically and mentally present during class-time | Irregular or sporadic engagement or attendance | Misses crucial classes often |
Midterm Feedback Form
Midterm Feedback Form - Akerstrom, Modular Constraints

Please take the time to answer these questions thoughtfully.

Circle a number and make a brief comment on how things could be improved.

1.) The workload in this class is challenging but manageable.
 Strongly Agree 1 2 3 4 5 Strongly disagree
 -What could be done differently to make this statement more true?

2.) The skills I am learning are applicable beyond this class.
 Strongly Agree 1 2 3 4 5 Strongly disagree
 -What could be done differently to make this statement more true?

3.) The methods of conveying the course material are clear, compelling and varied.
 Strongly Agree 1 2 3 4 5 Strongly disagree
 -What could be done differently to make this statement more true?

4.) Critiques are serving the function of sharing ideas and pushing development further.
 Strongly Agree 1 2 3 4 5 Strongly disagree
 -What could be done differently to make this statement more true?

What are your goals for the rest of the class?

How do you think you are performing?

How could the professor be a better resource?

Do you feel like there is ample and available time-space to meet individually with the professor?

How would you modify/change the class for the better?